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Introduction 
The "Time-resolved Spectral Optical Breast Tomography" research project aims to develop a near real- 
time three-dimensional (3D) spectral tomographic imaging algorithm with use of the cumulant 
approximation to radiative transfer to model light propagation in tissues. This project in this reporting 
period involves theoretical modeling of photon migration in tissues and image reconstruction, and 
working with the experimental group to apply and test the image reconstruction algorithm using 
experimental data obtained from phantoms. Significant advances were made during the current reporting 
period. 

Body 
The tasks performed and the progress made during the current reporting period include theoretical 
modeling of photon migration in tissues and image reconstruction, and working with the experimental 
group to apply and test the image reconstruction algorithm using experimental data obtained from 
phantoms. 

Theoretical modeling of photon migration in tissue and image reconstruction 

We continued to enhance the 3D tomographic image reconstruction algorithm based on the new cumulant 
transport model[l] to make use of spectral information when observations of multiple wavelengths are 
available (Task 1.3). By scanning a point source on the grids of the input plane of a slab and measuring 
light intensities on a detector array on the exit plane of the slab, a set of four-dimensional (4D) data is 
formed.[2, Appendix 1] The spectral information adds an additional dimension of the data. We started to 
investigate the optimal approach to analyze this huge dataset (Task 1.5). Some preliminary results were 
obtained from the application of information theory to the simulated and experimental dataset using 
Independent Component Analysis (ICA).[3, 4, Appendix 4] Improvement in the quality of image 
reconstruction was observed. 

We improved the 3D tomographic image reconstruction algorithm to use a L-curve method guided by the 
signal-to-noise ratio of the dataset to determine the regularization parameter (Task 1.4). 

We also studied the nonlinear effect of the multiple passages of light through an absorption 
inhomogeneity for optical imaging (Task 1). We derived the nonlinear correction factor (NCF) using the 
cumulant solution to radiative transfer. NCF was verified and supported by both Monte Carlo simulations 
and experiments. The nonlinear correction using NCF was shown to correct the underestimation of 
absorption by the conventional linear perturbation scheme of optical imaging when the inhomogeneity is 
strong in absorption.[5, 6, Appendix 3,5] 

Apply and test the image reconstruction algorithm using experimental data 

We worked with the experimental group at the Institute of Ultrafast Spectroscopy and Lasers at the City 
College of New York. The image reconstruction algorithm was modified to accept the data from the 
experimental group (Task 2). Experiments were performed to image objects inside tissue-like Intralipid- 
10% suspensions in water. Experimental results were analyzed and images were reconstructed using the 
3D tomographic image reconstruction algorithm (Task 2.2).[3, 4, Appendix 4] We are working to fine 
tune the algorithm using the experimental data. 

Further experiments will be performed on breast phantoms. Experiments to use multiple wavelengths and 
different configurations (transmission and backscattering) of the setup will be used to test and improve 
the 3D tomographic image reconstruction algorithm. 



Key Research Accomplishments 
• Developed and enhanced the 3D tomographic image reconstruction algorithm to use a L-curve 

method guided by the signal-to-noise ratio of the dataset to determine the regularization 
parameter. 

• Developed and enhanced the 3D tomographic image reconstruction algorithm to make use of 
spectral information in multiple wavelength measurements. 

• Developed a novel information theory approach to analyze the dataset for image reconstruction. 
• Extended the range of applicability of the linear inversion scheme for optical imaging using a 

nonlinear correction factor for inhomogeneities strong in absorption 

Reportabie Outcomes 
Journal Papers: 

1. Cai, W., M. Xu, and R.R. Alfano, Three dimensional radiative transfer tomography for turbid 
media. IEEE JSTQE, 2003. 9: p. 189-198. (Appendix 1) 

2. Xu, M. and R.R. Alfano, More on patterns in Mie scattering. Opt. Comm., 2003. 226(1-6): p. 1- 
5. (Appendix 2) 

3. Xu, M., Light extinction and absorption by arbitrarily oriented finite circular cylinders using 
geometrical path statistics of rays. App. Opt., 2003. 42: p" 6710-6723 

4. Xu, M., W. Cai, and R.R. Alfano, Multiple passages of light through an absorption 
inhomogeneity in optical imaging of turbid media. Opt. Lett., 2004 (in press) (Appendix 5) 

Presentations and Proceeding Papers: 
5. Xu, M., W. Cai, and R.R. Alfano. Nonlinear multiple passage effects on optical imaging of an 

absorption inhomogeneity in turbid media, in European Conference on Biomedical Optics: 
Photon migration and Diffuse-light imaging. 2003.(Appendix 3) 

6. Xu, M., et al.. Simulated and experimental separation and characterization of absorptive 
inhomogeneities embedded in turbid media, in Biomedical topical meetings on cd-rom (osa). 
2004: Fontainebleau Hilton Resort and Towers, Miami Beach, Florida. WF25 (Appendix 4). 

7. Al-rubaiee, M., et al.. Time-resolved and quasi-continuous wave three-dimensional tomographic 
imaging, in Femtosecond laser applications in biology. 2004: Palais de la Musique et des 
Congres de Strasbourg, Strasbourg, France. 

Grant application: 
Applied for breast cancer concept award "Localization and Identification of Tumor for Optical 

Breast Imaging" for BC03-CA. 

Conclusions 
The work carried out during the current reporting period builds on and affirms some of our earlier 
inferences and leads to the following conclusions. First, the L-curve method guided by the signal-to-noise 
ratio of the dataset and the information theory approach using independent component analysis to analyze 
the dataset were found to improve the quality of image reconstruction. Second, the 3D tomographic image 
reconstruction algorithm was enhanced to make use of spectral information in multiple wavelength 
measurements; Third, the correction for the nonlinear effect of the multiple passages of an absorption site 
by light was shown to be essential in optical imaging to characterize properly inhomogeneities strong in 
absorption. Fourth, the theoretical formalism and computer algorithm for 3D tomographic image 



reconstruction shows (with simulated and experimental data) the potential to provide fast 3D images of 
the scattering and absorption objects at various depths in turbid media. 
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Three-Dimensional Radiative Transfer 
Tomography for Turbid Media 

W. Cai, M. Xu, and R. R. Alfano 

Abstract—The photon distribution, as a function of position, 
angle, and time, is computed using the analytical cumulant solution 
of the Boltzmann radiative transfer equation (RTE). A linear for- 
ward model for light propagation in turbid media for three-dimen- 
sional (3-D) optical tomography is formed based on this solution. 
The model can be used with time resolved, continuous wave (CW), 
and frequency-domain measurements in parallel geometries. This 
cumulant forward model (CFM) is more accurate than that based 
on the diffusion approximation of RTE. An inverse algorithm that 
incorporates this CFM is developed, based on a fast 3-D hybrid- 
dual-Fourier tomographic approach using multiple detectors and 
multiple sources in parallel geometries. The inverse algorithm can 
produce a 3-D image of a turbid medium with more than 20 000 
voxels in 1-2 min using a personal computer. A 3-D image recon- 
structed from simulated data is presented. 

Index Terms—Absorption and scattering, forward model, in- 
verse algorithm, optical tomography, photon migration, radiative 
transfer equation (RTE). 

I. INTRODUCTION 

OVER THE PAST decade, optical tomography has been 
investigated as a noninvasive imaging method that uses 

nonionizing near-infrared (NIR) light to obtain images of the 
interior of the breast. Unlike X-ray, which is attenuated through 
media by ionizing the electrons at inner-orbits of atoms, NIR 
light uses the vibrational overtones for different molecular com- 
ponents in the structures of tumor. NIR light may be used to 
create image based on the molecular change, which may be used 
to improve sensitivity and specificity in the early diagnostics 
of breast cancer. Breast tissues scatter light strongly, and blur 
the direct shadow image of a tumor. A technique, known as in- 
verse image reconstruction, has been investigated to overcome 
the problem of multiple scattering. Some obstacles in the de- 
velopment of optical tomography are inaccuracy of the com- 
monly used diffusion forward model, and lack of a fast inverse 
algorithm able to realize a three-dimensional (3-D) image re- 
construction of a breast for clinical use. 

One critical issue is the forward model, which should cor- 
rectly simulate photon propagation in the medium. The most 
commonly used forward models were built based on solution 
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of the diffusion equation, which is the lowest approximation 
of the radiative transfer equation (RTE) [1H5]- The forward 
models based on the diffusion approximation (DA) give a large 
error when the distance d between a voxel and a source is 
small. Furthermore, the photon distribution still maintains a 
strong anisotropy in a deeper region away from a source, which 
will be shown later in this paper. Unfortunately, contributions 
from near surface voxels to measured signals are often larger 
than contributions from the voxels deep inside the medium. 
Inaccuracy of the DA-based forward model may lead to a 
failure in image reconstruction, especially for small hidden 
objects deep inside the medium. The total weight matrix should 
be inverted. The large elements in the matrix, which play a 
more important role in inversion, are evaluated incorrectly in 
DA models. The shortcoming of DA is well recognized, but it 
is still broadly applied due to the difficulty in directly solving 
the radiative transfer equation. Hielscher et al. [6] and Vihunen 
et al. [7] developed numerical solutions of RTE for optical 
tomography. 

Recently, we have developed an analytical solution of 
RTE, based on cumulant expansion, in an infinite uniform 
medium with an arbitrary phase function [8], [9]. It provides an 
explicit analytical expression for photon distribution function 
/(r, s, t), as a function of position r, direction of light s, and 
time t. The mean position and the half-width at half-maximum 
(HWHM) height of the distribution are always exact. In this 
paper, the linear forward model based on the cumulant solution 
is described. This CFM may used with time-resolved, contin- 
uous wave (CW), and frequency-domain data, which are much 
more accurate than the DA models. 

To obtain a 3-D image one needs to investigate the inverse 
algorithms. For clinical applications, this requires an inversion 
technique, that is computationally fast, and stable in the 
presence of measurement noise. Recent algorithms to solve the 
inverse problem include Newton's least-square-based methods 
and gradient-descent methods [l]-[5]. These approaches use 
an iterative procedure, which requires a long computation 
time to solve a 3-D inverse problem with large unknowns 
(the number of unknowns is the number of voxels). Further- 
more, the iterative methods can not ensure that the result 
arrives at a "global minimum," and does not converge to a 
"local minimum," which is not a true image of the medium. 
The application of Fourier transform, which has been called 
"diffraction tomography," can greatly reduce computation 
time. Matson et al. [10] and Li et al. [11] have developed the 
diffraction optical tomographic methods to realize fast image 
reconstruction. However, their algorithms are limited to the use 
of a single light source with a two-dimensional (2-D) plane 

1077-260X/03S17.00 © 2003 IEEE 
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of detectors. This type of experimental setup acquires only 
a set of 2-D data using CW or frequency-modulated light, 
that is not enough for a 3-D image reconstruction. Recently, 
Schotland and Markel developed inverse inversion algorithms 
using diffusion tomography [12]-[14] based on the analytical 
form of the Green's function of frequency-domain diffusive 
waves, and point-like absorbers and scatterers. Data obtained 
by muhiple sources with multiple detectors in parallel slab 
geometry are used in these approaches. 

A fast hybrid-dual-Fourier (HDF) algorithm, which uses mul- 
tiple sources and multiple detectors in parallel slab geometry, 
is described in this paper for reconstruction of a 3-D image of 
an inhomogeneous medium. This approach uses a general 2-D 
translation invariance of the Green's function in a homogeneous 
background slab medium, suitable for forward models based on 
solution of RTE, and various other forward models, in CW, fre- 
quency-domain, and time-resolved measurements. This inverse 
algorithm runs fast. It is shown that a 3-D image of a turbid 
medium (for example, divided into 32 x 32 x 20 = 20480 
voxels) can be reconstructed in 1-2 min using a personal com- 
puter. This algorithm can produce stable images in presence of 
relatively strong noises. 

The forward model and the inverse algorithm discussed in 
the following can also be applied for image reconstruction in a 
cloudy environment for military use. 

This paper is organized as follows. Section II presents the 
analytical solution of RTE, based on a cumulant expansion, 
in an infinite uniform medium and shows the photon distribu- 
tion function computed using the cumulant analytical solution. 
Section III describes the forward models based on the ana- 
lytical solution of RTE, considering the slab geometry, and a 
weak heterogeneity using a perturbative method. Section IV 
describes the HDF inverse algorithm for a reconstruction of 
a 3-D image of an inhomogeneous medium. The 3-D image 
using this algorithm is shown. A discussion is presented in 
Section V. 

II. ANALYTICAL CUMULANT SOLUTION OF RTE 

The photon propagation in a medium is described by the 
photon distribution function, 7(r, s, t), as a function of time 
t, position r, and direction s. The mathematical equation 
governing photon propagation is the well-known radiative 
transfer equation 

dI{T, s, t)/dt + cs • Vr/(r, s, t) + /^„(r)/(r, s, t) 

= M,(r) /P(s, s', r)[/(r, s', t) - /(r, s,t)] ds' 

+ 6{T - To)5{s - so)5{t - 0) (1) 

where the fundamental parameters are the scattering rate 
/is(r) = cpUs, the absorption rate /ia(r) = cpaa, and the 
differential angular scattering rate yLis(r)P(s, s', r), where 
Oa and (Ts are the absorption and scattering cross sections 
respectively, p is density of scatterers, and c is the speed of light 
in the medium. In a uniform infinite medium, these parameters 
are position independent. 

When the phase function depends only on the scattering 
angle, we can expand the phase function in Legendre polyno- 
mials with constant coefficients 

^(^'^') = i^E"'-'''['=°'('-^')i- (2) 

Recently, we have developed a new approach to obtain an 
analytical solution of RTE, based on a cumulant expansion, in 
an infinite uniform medium, with an arbitrary phase function 
P{s, s') [8], [9]. 

We briefly review the concept of "cumulant" in a one-di- 
mensional (1-D) case. Consider a random variable x, with a 
probability distribution function f{x). Instead of using f(x) 
to describe the distribution, we define the nth moment of 
X, (i") — J x"f{x) dx, and correspondingly the nth cumulant 
(i">c defined by exp(J]^^i(a;")c(ii)"/n!) = (exp(ite)) = 
X^^o(^")(*0"/"'- The first cumulant (x)c is the mean posi- 
tion of X. The second cumulant {x'^)c represents the HWHM 
of the distribution. The higher cumulants are related to the 
detailed shape of the distribufion. For example, {x^)c describes 
the skewness or asymmetry of the distribution, and {x^)c 
describes the "kurtosis" of the distribution, that is the extent to 
which it differs from the standard bell shape associated with the 
normal distribution function. The cumulants, hence, describe 
the distribution in an intrinsic way by subtracting off the effects 
of all lower order moments. In 3-D case, the first cumulant has 
three components, the second cumulant has six components, 
and so on. 

We derived an explicit algebraic expression of spatial cumu- 
lants at any angle and any time that is exact up to an arbitrarily 
high order n [9]. This means the distribution function 7(r, s, t) 
can be computed to any desired accuracy. At the second order, 
n = 2, an analytic, hence, useful explicit expression for dis- 
tribution function /(r, s, t) is obtained [8]. This distribution is 
Gaussian in position, which is accurate at later times, but only 
provides the exact mean position and the exact HWHM at early 
times. A weakness of the second order cumulant solution is that 
photons at the front edge of Gaussian distribution travel faster 
than light speed, thus violate causality, though to a much less 
extent than that in the DA. 

Fig. 1 compares/(r, s, t) obtained from the analytical cumu- 
lant solution and the Monte Carlo (MC) simulation. In order to 
reduce the statistical deviation to an acceptable level, 10^ events 
are counted in the MC simulation. The figure shows that the 
solid curve (the tenth-order cumulant solution) is located in the 
middle of data obtained by the MC simulation. The solution for 
CW case can be obtained by an integration of /(r, s, t) over 
time (. It is shown that even second order cumulant solution (the 
dotted curve) can provide an accurate CW solution, because this 
solution ensures that the mean position and the HWHM of dis- 
tribution are always exact. 

The plots in Fig. 1 indicate that a strong anisotropic angular 
distribution still exists at z ~ 6 Itr ihr is the transport mean free 
path) from the source. The DA is only valid when the angular 
distribution is nearly isotropic. The dominate s wave distribu- 
tion A^(r, ^)/47r computed using the diffusion model (the thick 
dotted curve) has a large discrepancy with the MC result. 
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Fig. 1. Distribution function /(r, s, t) in an infinite uniform scattering 
medium as a function of time f, using Henyey-Grccnstcin phase function 
with 0 = 0.9. The detector is located at fi = 6 /ir = 60/, from the source 
front along direction of incident light, and the direction is along the incident 
direction. The solid curve is computed from approximation up to tenth order of 
cumulant; the dotted curve is computed from approximation up to the second 
order of cumulant, the discrete dots are from the MC simulation; the curve of 
thick dots is from the DA, N(v, t)/4-K. 

The second-order analytical cumulant solution is given by [8] 

u       .^ _ ^i^' «o. t) 1 
^^""'■'^"    (47r)3/2    (detB)i/2 

•exp —^{B-'U{r-r^Ur-n, 

where 

F(s, So, t) 

= exp(-^at) Y^ —Tj^ exp(-5,t)P,[cos(s ■ SQ)] 

—  P:T(n( — ll.^f!\    > '^^^•'exDr   a,t^\"Y,„(s^Yr 

(4) 

In (4), gi = ^.[1 - a,/(2/ + 1)], Yi^{e, cj>) = (-!)'"[(/ - 
m)!/(/ -I- m)!]i/2Pj('")(cosg) exp(im9!.), where P/'"^(cose) is 
the associated Legendre function, and Yimi's) are spherical har- 
monics normalized to 4Tr/{2l + 1). 

In (3), the mean position of the distribution (first cumulant), 
when the source is located at TQ = 0 and the incident direction 
is along z, is given by 

rl{s,t)=Gj2AiPi{cose) 
I 

■[{l+l)f{9i-0i+i) + lfi9i-9i-i)]      (5.1) 

rJ(s,i)=G^yl,P/''(cose) 

• cos(/>[/((7( - gi-i) - f{gi - gt+i)] (5.2) 

where 

G = cexTp{-iXat)/F(s, So, t) 

f{g) = [cxpigt) - l]/g 

Ai^{l/4T:)exp{-git) 

Ty is obtained by replacing cos 4> in (5.2) by sin (f). 
The HWHM (second cumulant) is expressed as 

5a^(s, t) = cGA^f, - r=r^/2 

with 

A.. = 53^,P,(cose) 

;2 
-f 

2/-1 
El'^ + 
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2/+ 3 E} 
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E 
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Ayz is obtained by replacing cos^i in (8.4) by sin0. In 
(8.1)-(8.4) E\'^~'^'^ are given by 

^(1) EY^ = [figi - gi-2) - f{gi - gi-i)]/{gi-i - gi-2)   (9.1) 

^P' = if {91 - 9t+2) - f{9i - 9i+i)]/i9w - 91+2)    (9.2) 

Et^ = \f{9i - 91-1) - t]l{9i - gi-i) (9.3) 

E\''^ = [f{gi - gi+i) - t]/{gt - g,+i). (9.4) 

Fig. 2(a) and (b) shows the light distribution as a function of 
time at different receiving angles in an infinite uniform medium, 
computed by the second cumulant solution, where detector is 
located, separately, at 5 kr [Fig. 2(a)] and 15 it,. [Fig. 2(b)] from 
the source in the incident direction of the source. Fig. 2 shows 
the existence of the strong anisotropy of the light distribution at 
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Fig. 2. Light distribution in an infinite unifonn medium as a function of time 
at different received angle, using second cumulant solution of radiative transfer 
equation, where detector is located, separately, at 10 [Fig. 2(a)] and 30 mm 
[Fig. 2(b)] from the source in the incident direction. The parameters for this 
calculation arc: /,,. = 2 mm, /„ = 300 mm, the phase function is computed 
using Mie theory for polystyrene spheres with diameter rf = 1.11 /tm in water 
and the wavelength of laser source A = 625 nm, which gives the g-factor 
g = 0.92G. 

5 Itr from the source and the modest anisotropy at a distance of 
\5 Itr- These types of distributions have been demonstrated by 
time-resolved experiments [15]. 

One advantage of using the above analytical solution of RTE 
is that the distribution ftinction can be computed very fast. The 
associated Legendre functions can be accurately computed 
using recurrence relations. It takes only a minute to compute 
10^ data of/(r, s, t) on a personal computer. 

The corresponding solution in the frequency-domain 
/(r, s, w) can be obtained by making a Fourier transform 
J dtexp(-iut)I{T, s, t). The CW solution is obtained by 
taking ui = 0. 

The photon density N{r, t) of the second cumulant solution 
is given by 

7V(r, t) 
1 1 

{4TTD,,cty/^ ATrD^^ct 
exp 

•exp {x' + y') 2M 

4DxxCt 
exp{-nJ)    (10) 

with the mean position 

R^ = c[l -exp{-git)]/gi. (11) 

The corresponding time-dependent diffusion coefficients are 

^-- = M t 3gi - (72 

91    aligi - 92) 
[1 - exp(-(7it)] 

+ [1 - exp(-520] 
52(51 -92) 

^[l-exp(-5it)f} (12) 

D.. ■D^ 

_c_{t_ + 92 

g\{9i-92) 
[1 -exp(-(7ii)] 

1 

52(51 - 52) 
[1 - exp(-(j2t)] }■ (13) 

As shown in (11)-(13), the mean position of the distribution 
is moving, and the diffusion coefficients are time dependent. At 
i —> 0, the mean position of the photon density moves along 
z direction with speed c, and the diffusion coefficients tend to 
zero, this result presents a clear picture of near ballistic mo- 
tion. As time increases, the mean position motion slows down, 
and the diffusion coefficients increase from zero. This stage of 
photon migration is often called a snakelike mode. At long time, 
(10) tends to the center-moved (1 In-) diffusion model with the 
diffusion coefficient /(r/3. 

III. FORWARD MODEL BASED ON THE 

CUMULANT SOLUTION OF RTE 

The linear forward models for scattering media are built in 
following three steps: 1) computation of a background Green's 
function in an infinite uniform medium; 2) extension of this 
Green's function to slab geometry; and 3) computation of the 
weight function using a perturbative method. These steps have 
been applied in building the linear forward models under DA 
[2]. We use these steps as well, but our approach is based on the 
cumulant solution of RTE, rather than the solution of the diffu- 
sion equation. 

We use the second-order cumulant solution for computing a 
background Green's function in an infinite uniform medium, 
since it is easy to use the explicit expressions in (3)-(9), that 
avoid complicated computations of higher order cumulants. The 
second order cumulant solution is accurate at later times, but 
only provides the correct mean position and the correct HWHM 
at early times. We notice that the width of the distribution at 
early times could be smaller than the size of a voxel, the average 
over the distributions at different points in a voxel smears the de- 
tail shape of the distribution. In the CW or frequency- domain 
cases, the shape of the distribution is further smeared by integra- 
tion over time t. Therefore, the second-order cumulant solution 
can be a reasonable approximation in building forward models 
based on the RTE. 

Since a detector usually collects emergent light within a wide 
range of angle of different directions, it is convenient to compute 
the Green's function related to a detector using photon density 
Nir^. t) (10)-{13), where r^ is the position of detector. 
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Fig. 3.    Schematic diagram shows how to extend the cumulant solution of RTE 
from an infinite medium to a semi-infinite medium. 

It is essential to include the boundary effect in the solution of 
the RTE when photons are injected into and spread out from a 
finite sized medium. A proper extension of the cumulant solu- 
tion to slab geometry is an essential step for building a forward 
model. 

A boundary condition is applied based on the following phys- 
ical consideration. At early times, the center of photon distribu- 
tion injected into medium, moves forward into medium. Then, 
the distribution spreads out from the moving center with dif- 
fusion coefficients that gradually increase from zero. At early 
times, the number of photons leaking out of the boundary is 
negligible compared to the total number of the incident photons. 
The boundary condition plays a role at later times, when there 
are many photons leaking out of the boundary. 

The approach known as an approximate "extrapolated" 
boundary condition [16], extrapolates the boundary by a 
distance ^ = Q Ur, the extrapolation length, beyond the real 
boundaries with a ~ 0.7, at which the photon density vanishes. 

To apply this boundary condition for the cumulant solution in 
a semi-infinite geometry a, a virtual negative source Sy is added 
to the original source S, as shown in Fig. 3. During the early 
period, the solution of the RTE in an infinite uniform medium 
automatically satisfied the boundary condition because the den- 
sity is near zero at the boundary, and the virtual source does not 
play a role. After a time of approximately 4 Uric, the center of 
photon density, C, has moved and stopped at a position 1 Ur 
from the original source S and the center from virtual source, 
Cv, has moved in a similar way. Then, the arrangement shown 
in Fig. 3, produces a cancellation of contributions to the photon 
density from the original source and the virtual source on the 
extrapolated boundary. 

Fig. 4 shows that the time-resolved backscattered photon dis- 
tribution in a semi-infinite medium on the x = 0 surface, with 
the source-detector distance 1 UT, obtained using the second- 
order cumulant approximation and the extrapolated boundary 
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0.002 
o .c a 

;g 0.001 

10 

time [l.Jc] 

Fig. 4. Backscattered photon distribution /(r, s = -z, t) emerging from 
plane surface of a semi-infinite turbid medium, as a function of time, with the 
source-detector distance 1 /ir on the surface j = 0 plane. The pulse source 
is located at i = 0, incident along z direction. The extrapolated boundary 
condition is used. The solid curve is obtained fi-om cumulant approximation 
(CA), up to the second cumulant. The dashed curve is from DA. The cross points 
are obtained from MC simulation. 

condition, which agrees with the MC simulation much better 
than that of the DA. 

For extending to the slab geometry, adding a series of pairs of 
virtual "image" sources at both sides of slab is a good approxi- 
mation for satisfaction of the extrapolated boundary conditions 
on both sides of a slab [17]. 

The heterogeneous structure of a highly scattering turbid 
medium can be characterized by the following optical param- 
eters: the scattering rate ;Us(r), the absorption rate A«a(r), and 
the differential angular scattering rate /is(r)P(s, s', r). 

A perturbation method is used which takes the photon dis- 
tribution function in a uniform background slab medium as the 
zero-order approximation. The change of the photon distribu- 
tion function originates from the change of optical parameters 
compared to that in the uniform background slab medium. The 
change of scattering and absorption parameters are defined as 
follows: 

A/i3(r)=/Xs(r)-Aif) 

AMa(r)=Ma(r)-Mi°^ 

A[^3P](s, s', r) =Ms(r)P(s, s', r), -/xi°)p(°)(s, s')   (14) 

where the quantities with super index (0) are the optical pa- 
rameters in a uniform background slab medium. By expanding 
A[/isf ] (s, s', r) in Legendre polynomials, we obtain 

A[MSP](S, S', r) 

= J- ^[A/x,(r)a[°> + MWAo,(r)]P/[cos(s ■ s')]    (15) 

with Aao(r) = 0, since ao always equals 1. The physical 
meaning is that the scattering parameters have no effect on the 
s (/ = 0) component. 
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Making a perturbation expansion of (1) to the first-order Bom 
approximation, the change in the photon distribution is given by 

A7(rd, Sd, i|rs, Ss) 

=  fdt' /dr /ds7(°)(rd, Sd,f-t'|r, s') 

A[/XsP](s, s', r)/W(r, s,t'|r„Ss)rfs {/• 
[AM.(r) + A/i„(r)]/(°)(r, s', t' | r„ Ss)!     (16) 

where A/(rd, Sd, i | r^, Ss) is the change in the light intensity 
received by a detector located at rd, along the direction Sd, and 
at time t, which is injected from a source located at r^, along 
a direction of s,, at time t — 0. "Change" refers to the dif- 
ference in intensity compared to that received by the same de- 
tector, from the same source, when light passes through a uni- 
form background slab medium. The term 7'°^ (r2, S2, t|ri, si) 
is the intensity of light, calculated using the cumulant solution 
of RTE, at T2 along the direction S2 and at time t, when light is 
injected from a position ri along a direction of sj at time t = 0 
migrating in a uniform background slab medium. 

The background Green's functions in (16), obtained by cu- 
mulant solution, are expanded in spherical harmonics 

J(»'(r, s,t'|r,, s,) = J2^'rn{r, r„ s^, t')^im(s), 

7(°)(rd, Sd, t-t'U,s) = Y^ ^i'nir, v„ s,, t - t')Yr„Xs)- 
l,rn 

(17) 

The spherical transform is performed using a fast Fourier trans- 
form for the integral over 0, and a Clenshaw-Curtis quadrature 
for the integral over d. 

Using the orthogonality relation of the spherical function and 
the addition theorem: Y,^ 5^(m(s)y4(s') = P;[cos(s • s')], the 
analytical integration over s and s' in (16) can be performed. For 
time resolved data, the contribution from an absorbing object 
located at rt is given by 

A7(rd, Sd, Ts, Ss, t\Tk) 

rt 1^ 

•'0        /=o 

47r 

{21 + 1) 

■ ^^,m(rfc, rs, Ss, t')Cl^{Tk, Fd, Sd, t - t')      (18) 
m 

where 5Vk is the volume of fcth voxel, and L is the cutoff value 
in the Legendre expansion in (18). The contribution from a scat- 
tering object located at r* is given by 

A7(rd, Sd, Ts, Ss, t\Tk) 
L 

-8Vk  ' 
ft       i- 

■   dt'E 
47r 

(2/-f 1) 

JO) _   (0)Ao,(r)t) 
A^.{r,)\^l-^^j     -     21 + 1 

■Y^Alrnirk, Ts, Ss, t')C*^{lk, Vd, Sd, t - t').        (19) 

For frequency domain (or CW) data, the contribution from an 
absorbing object located at Tk is given by 

A7(rd, Sd, Is, Ss, w|r/t) 
L 

= -Alla{Tk)SVkY^ 
1=0 

47r 

21 + 1 

"^Almirk, Is, Ss, U})c*^(Tk, rd, Sd, w) (20) 

and the contribution from a scattering object located at Tk is 
given by 

A7(rd, Sd, Ts, Ss, w|rfc) 

-sy^E 
;=i 

4TT 

21+1 

AAi.,(rk)    1 
,(0) 

2Z-I-1 
,(0) 

Aa((rfc) 
2/-t-l 

• ^>l(m(rfc, Ts, Ss, w)c;,„(rfc. Id, Sd, w).        (21) 

Comparing (18)-(21) with the corresponding weight function 
commonly used in the DA, [I], [2] only s wave (/ = 0) for ab- 
sorptive objects, and only p wave (/ = 1) for scattering objects 
are considered in the diffusion forward models. Besides, even 
for s wave and p wave, the diffusive solution is incorrect when 
voxels are located near the source, as discussed before. 

The previous formulae allow simulating the background 
Green's function and the change of optical parameters in 
detail. They are also applicable to the cases where only a 
few parameters of the medium are known, similar to that 
for the diffusion forward model. When only ni , Ha , and 
5-factor for an uniform background medium are given, the 
Henyey-Greenstein phase function [18] is widely adopted as 
an approximate phase function 

1 i-g' 
p{cose) = 

Air  (l+fl2_2(?COS&)3/2 

^  J2{2l + l)g'Pi{cos9). 
I 

Alt 
(22) 

Although (22) uses a single parameter j-factor to describe a 
phase function, this description is much better than that used 
in the DA, which implies a phase fimction linear in cos 6. 

If Aoi(r) in (21), which represent the change of the phase 
function, is not considered, two optical parameters being im- 
aged are A/ia(r) and A^s(r). The reduced scattering coeffi- 
cient A/Xs(l — a\ ' /3) is directly related to A73 (change of the 
diffusion coefficient) used in the DA models. The CFM, hence, 
can be applied to the experimental data in a similar fashion as 
that for the DA models, to obtain images of the optical parame- 
ters. In the CFM, however, all contributions from higher spher- 
ical waves are properly included. 

The most time consuming part in computation of CFM using 
the previous formulae is to build a database of Aim and C,*„. 
Once it is built for a uniform background medium, the database 
can be applied for imaging of various heterogeneity cases. In 
parallel geometry, Aim is a function of (x/t — x,, yk — 2/s) due 
to the 2-D translation invariance. Since position of source z, and 
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incident direction Ss are fixed, only a 3-D (xfc-Is, yk — ys, ^k) 
database is required. When Sj is taken along z direction (light 
is injected perpendicular to surface), the scale of database is re- 
duced to 2-D due to the z axis symmetry. Photons from different 
directions in a wide solid angle are received by a detector, as dis- 
cussed before, photon density N{Td — r, s, i) is used for com- 
puting the Green's function associated with detectors, which is 
independent of sj, and C,*„ can be computed much easily. The 
database can be built in a reasonable computation time because 
the distribution function /'"' (r2, S2, (| ri, Si) can be rapidly 
calculated using the analytical expressions. 

IV. FAST 3-D HDF INVERSE ALGORITHM 

We now outline an inverse algorithm to quickly reconstruct 
image of a medium from acquired measurements using the 
above CFM. The model, neglecting the irrelevant parameters, 
can be briefly written as 

Y{^A. fs, 2d,  Zs) 

dxdzWi^A - r, Fs - r, z, zj, Zs)A'(r, 2)    (23) 

multiple detectors in parallel geometries a dual 2-D Fourier 
transform JrfFs drde'''»''»e''''"'"' is performed on (23), to obtain 

/' 

where R — (f, z) is the position of a voxel inside turbid 
medium; r is (x, y) coordinates; R5 = (Fs, Zg) is the position 
of a source; and Rd = (Fd, zj) is the position of a detector. 
In (23), y(fd, Fs, Zi, Zs) is the measured change in light 
intensity received by a detector at Rd from a point source at Rg. 
X(r, z) is the change of the optical parameters inside turbid 
medium. The weight function \'V{JA — F, FS — F, z, Zd, Zs) 
is a fiinction of Fd - F and Fs — F on (a;, y) plane, because of 
parallel geometry, assuming an infinite sized area, and the 2-D 
translation invariance of the Green's function in a background 
homogeneous slab. Here, the special form of the weight 
function is not relevant; the weight function can be calculated 
by the CFM or the DA models, using with CW, frequency, 
or time-resolved data. This approach is general and can also 
be used for inverse problems of nonoptical measurements in 
parallel geometries. 

A light source scans through a 2-D array. Transmitted or 
backscattered light signals emerging from the medium are 
detected using a 2-D array of detectors, such as a charge-cou- 
pled device (CCD) camera (or time-gated CCD camera in 
the time resolved case). Each illumination of the light source 
provides a set of 2-D data on the 2-D detector array. For CW 
or frequency-modulated light source, this arrangement can 
produce a set of 2-D x 2-D = 4-D data in a relatively short 
acquisition time, because a CCD camera produces 2-D data 
of the detectors at different positions simultaneously. When 
time-resolved or modulation at multiple frequencies are ap- 
plied, a set of five-dimensional (5-D) data can be acquired. The 
inverse problems of 3-D imaging, hence, are over-determined, 
which is necessary for obtaining an accurate 3-D image. 

When the translation invariance is satisfied, the Fourier 
transform approach is a powerful technique to achieve a fast 
inversion. In the Fourier space, the convolution of W and X 
becomes a product of W and X, and the weight matrix W 
becomes diagonal. Hence, inversion can be performed much 
faster Using this concept in the case of multiple sources and 

|dFsrfFde'5=''e'^^^<'y(Fs, Fd, z,, za) 

—     dz     di I d(Fs — F) d(Fd — r )e iq,(r,-r)gtqd(rd-r) 

• W{T, - F, Fd - F, z„ Zd, z)e'(^'+^^)^X(r, z) 

which leads to 

y{^d, qs, Zd, Zs) =  / dzW{qd, Qs, z, Zd, Zs)X(qd + qs, z) 

.     . . (24) 
where Y, X, and W are change in light intensity, change in 
optical parameters, and the weight function in the Fourier space, 
respectively. 

A similar form of this dual Fourier transform has been derived 
by Markel and Schotland [13], [14] in a frequency-domain dif- 
fusion model. 

Equation (24) seems difficult to be used for performing the 
inverse reconstruction because of the argument mismatch (qd -I- 
cjs) in X and (QS, qd) in Y and W. This difficulty occurs be- 
cause the weight function in (23) is related to three positions: 
Fd, Fs, and F. To remove this complexity, the following linear 
hybrid transform is introduced: 

u = qd + qs 

V =qd -qs. 

This results in the HDF formula 

Y{u, V, Zd, Zs) -  / dzW{n, v, z, Zi, Zs)X{^, z) 

(25) 

(26) 

where Y, X, and W are, respectively, Y,X, and W as functions 
of u and v. 

While (25) is a relatively simple expression, it is essential to 
properly realize this hybrid transform in discrete lattices of the 
Fourier space. A procedure to quickly perform this transform 
from (qd, qs) coordinates to new (u, v) coordinates, separately, 
for X and y components, is explained in Fig. 5 using an example 
of a 6 X 6 lattice. The maximum value of u is taken as the 
maximum value of qd or qs, not the maximum value of qd -I- qs- 
The periodic property of lattice in the Fourier space is used, for 
example, Y{u :=. 2, v = 4) = F(qs = 3, qd = 5). This 
procedure builds a one-to-one correspondence between lattices 
in the two coordinate systems. Fig. 5 shows that Y and W at 
each node [circle in Fig. 5] in (u, v) coordinates are directly 
mapped from Y and W, respectively, at the corresponding node 
in (qd, q,) coordinates without any algebraic manipulation. 

In (26), a common 2-D Fourier argument u appears 
in Y, X, and W. For each value of u, (26) leads to an 
over-determined 1-D problem for inverse reconstruction: 
Yi'v) = JdzW{v, z)X{z). In order to perform fast in- 
version, we invert the normal form of the forward model: 
YW^ = [W^WjX for each ii, where [W^W] is a M x M 
matrix, with M the number of layers in 2 direction. The original 
W in (23) is a matrix with a large dimension. The inverse 
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Fig. 5.   Example of a 6 x 6 lattice for explaining the linear hybrid transform 
from ((Id, (Is) coordinates to (u, v) coordinates. 

^^^1 ^^^H ^^^B ^^^H — 

^^^1 ^^^H ^^^H ^^^^^1 

problem now is simplified to invert many (number of discrete 
value of il) matrices, each with a small dimension M. The latter 
problem is much more computationally efficient compared 
to the original problem of (23). Once X{u, z) are obtained 
for all if, a 2-D inverse Fourier transform produces X{x, z), 
which is the 3-D image of optical parameters of the medium. 
Markel and Schotland use different procedures for inversion. In 
[13], a Fourier-Laplace inversion is applied, hence, an analytic 
continuation of measured data to the complex plane is required 
for the inverse Laplace transform. In [14], an inverse procedure 
is performed in an argument space, similar to variables v here. 
Since v include 2-D variables, inversion in v space could take 
longer time than that of inversion in z space. 

As discussed previously, matrices W and [l-^-^iy] for each 
il can be calculated in advance for a uniform background slab 
medium. Assuming that a group of experimental data has been 
acquired, the following steps are taken to produce a 3-D image 
of the medium: 

1) obtain "change" of intensities, y(rd, Fs, zj, Zj), by sub- 
tracting the intensity for a uniform background medium 
from the measured intensity; 

2) extend the (a;, r/) area and padding zeros, to overcome the 
wraparound problem in discrete convolutions [19]; 

3) perform a dual 2-D fast Fourier transform (FFT) of 
F(rd, Fs, Zd, Zs) in the extended area to produce 
y(qd, Qs, Zd, Zs); 

4) determine y(ir, v, Zd, Zs) for each ii, using a mapping 
procedure explained in Jig^ 5; 

5) invert YW"^ — \W'^W]X for each ii, which is an in- 
verse problem involving a M x Af matrix, with M the 
number of layers along z direction. Proper regularization 
according to noise level needs to be taken into account. 
Regularization will be discussed later in the paper; 

6) perform an inverse 2-D FFT on X{VL, Z) to produce 
X{v, z). 

Fig. 6. 3-D image reconstructed using hybrid dual Fourier tomography. Two 
absorbing objects, each with the volume 3x3x2 mm^, are located inside a 
turbid medium with volume 96 X 96 x 40 mm' divided into 32 X 32 X 20 
voxels. The first one is located at position labeled (10, 10, 10) with absorption 
difference Ap„ = 0.01 mm"'. The second one is located at position labeled 
(20, 20, 15) with absorption difference A;i„ = 0.007 mm"'. A CW light 
source incident perpendicular to the z, = 0 plane is scanned through a 2D 32 x 
32 array at the plane, with each pixel 3 mm x 3 mm. A same sized 2D array of 
detectors is located at z^ plane (transmission geometry). The simulated data are 
produced with noise 5%. A linear scale of color bar from the maximum value to 
minimum value of A;«„ is used. The numbers labels the z layers counting form 
source to the detector, layers arc separated by 2 mm. 

Our computational experiments show it takes only 1-2 min 
on a personal computer to perform an inverse reconstruction of 
a 3-D image of a medium with a large number of voxels (for 
example, 32 x 32 x 20 voxels) using this HDF algorithm. 

To demonstrate our concept of HDF tomography in 3-D 
image reconstruction, an example using simulated CW data is 
presented. A slab turbid medium, with a transport mean-free 
path ItT = 1 mm, absorption length la = 300 mm, and 
thickness Zd = 40 mm, is divided into 20 layers. A CW light 
source, injected perpendicular to the Zs = 0 plane, scans by 
a 2-D 32 X 32 array on the plane, with each pixel 3x3 mm. 
A 2-D array of detectors with the same spacing is located at 
Zd plane (transmission geometry). The medium, is divided into 
32 X 32 X 20 voxels, each of dimension 3x3x2 mm^. 
Two absorbing objects are located in the medium, each with a 
volume 3x3x2 mm^. The first one located at (10, 10, 10) 
has an absorption difference of A^a = 0.01 mm"' with the 
background. The second one is located at (20, 20, 15) with an 
absorption difference of 0.007 mm~^. The simulated data with 
noise level of 5% are obtained using the CFM. The tomographic 
images are shown in Fig. 6. As shown, the central positions of 
3-D image of the objects are correct, located at a voxel (10,10, 
10) with dark color, and a voxel (20, 20, 15) with gray level. 
The resolution of image is about ~6 mm in the transverse 
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(x, y) plane and ~10 mm along z direction. In general, the 
axial resolution (along z direction) is poorer than the lateral 
resolution [on the {x, y) plane]. In transmission geometry, two 
Green's functions in the weight function compensate each other 
when the z position of the object changes, that leads to a poor 
sensitivity of the measured photon intensity to the z position 
of the object. The shapes of 3-D image of two objects are 
ellipsoids with longer axis along the z direction. The absorption 
difference has the maximum value at the center of ellipsoid, 
and decays gradually with increase distance from the center 

A cutoff in discrete lattices of QS and qa naturally introduces 
a kind of regularization. This regularization is very efTective. 
Initial tests show that even adding 30% of fluctuations on sim- 
ulated data of y(rd, Fs, 2d, z.,), an image similar to that shown 
in Fig. 6 is still reconstructed. The reason for this is that noises 
come from fluctuations at different source and detector posi- 
tions, which are mainly the high-frequency components of qs 
and qd. A cutoff in q^ and qj naturally eliminates these high 
frequency noises, such that a stable image, especially in (x, y) 
plane, can be reconstructed in a strong noise level. 

However, the inverse problem is still ill-posed, because 
contribution to the change of intensity from a small voxel 
deeply inside medium is weak, and is not sensitive to its z 
position in transmission case. A regularization procedure on 
inversion of Fiy^ = [ly^H^jA' is still needed. The standard 
Tikhonov regularization approach [20] is applied and L-curve 
[21], [22] method is used for determining the best regularization 
parameters. 

This fast inverse algorithm produces a 3-D image in a linear 
image regime. For nonlinear image reconstruction procedure, 
the reconstructed 3-D image provides a good initial profile for 
further refining the 3-D image taking the nonlinear effects into 
consideration. 

The HDF inversion method can be extended to a cylindrical 
geometry, with an arbitrary shape of the (x, y) cross section, 
for 3-D image reconstruction. In this geometry, an algorithm 
using a single Fourier inversion has been developed [23]. This 
algorithm is limited to the case that the sources and the detectors 
are located on a plane with same z coordinates. The hybrid-dual- 
Fourier inverse approach in cylindrical geometry removes this 
restriction, so more data can be acquired for 3-D tomography. 
The linear forward model in cylindrical geometry is given by 

y{^d, fs, Zd, Zs) 

=  / drdzW{vA, fs, r; Zd -z,z,- z)X{x, z)    {11) 

The (1-D) linear hybrid coordinate transforms, u = qj + q^, 
and V = qd - qs, for (28) leads to 

I y(u, V, Fd, F,) == / driy(u, V, Fd, F,;r)X(u, F)     (29) 

where VF(rd, F^, x\Zd - z, z^ - z) is the weight function, a 
function of Zd - z and Zg - z due to the 1-D translation invari- 
ance of the Green's function in a homogeneous background 
medium in cylindrical geometry (assuming infinite z length). 
We make a dual I-D (along z direction) Fourier transform 
/dzd dz,e''''"=''e'''''- on (27) to obtain 

Yi^ld, qs, Fd, I,) zz   / dzW{qd, qs, F, Fd, F,)i'(qd + qs, r) 

.     . . (28) 
where Y, X, and W are the Fourier space quantities corre- 
sponding that in (27). 

where Y, X, and W are, respectively, Y, X, and W as 
functions of u and v. For each value of u, (29) is an over 
determined 2-D problem for inverse reconstruction, namely, to 
determine a 2-D unknown value of ;^(u, r) from known 3-D 
dataofy(u, v, Fd, Fs) for each u. This 3-D-2-D determination 
enhances the accuracy of 3-D image compared to 2-D-2-D 
determination in the single-Fourier transform inversion. After 
X{\\, r) are obtained for all u, a 1-D inverse Fourier transform 
produces the image X{r, z). 

V. DISCUSSION 

As shown in (19) and (21), there is no contribution from s 
wave to the weight function for a scattering object. This result 
reflects a fact that no scattering effect exists for an isotropic an- 
gular distribution. In the regions far from sources, the weight 
function contributed from scattering objects is small because 
there is no contribution from the dominant s wave, as shown in 
many results based on the diffusion models [l]-[5]. This non- 
sensitivity of signals to the scattering objects deep inside the 
medium should be considered in optical tomography. A pure 
isotropic distribution is never achieved, otherwise, there will be 
no flux in any directions. In the diffusive model, a small p wave, 
- (3/47r)Z)s • VA^, exists which maintains the photons diffusing 
to the regions with fewer photons. The factor - ViV represents 
this effect. However, this expression is valid only in the regions 
where the p wave is much smaller than s wave, {1/4IT)N, and 
does not correctly describe the early photon propagation near 
sources. Since only the weight function for scattering objects 
close to sources plays an important role, but it was estimated 
using the formula valid in regions far from sources, substantial 
error introduced in the diffusion forward model for scattering 
objects is crucial, considering fi'^ > /i„ in tissue. 

For the weight function of absorbing objects, contributions 
from all spherical components, including s wave, are given in 
(18) and (20). In commonly used diffusion formula, the con- 
tribution from p wave was neglected. The diffusion coefficient 
originally derived in the DA is JD = l/(3/u', + Ma), that leads to 
AD =: -£'(°)2(3A/x^-fAyUa). The contribution frompwave to 
the weight function for absorbing objects, hence, should exist. 
However, in the later diffusion models, AD is assigned only 
for scattering objects and only s wave for absorbing objects is 
taken. Equations (18) and (20) provide a quantitative estimation 
of weight fiinction for absorbing objects in regions close to the 
source, as well as far from the source. 

The CFM and the HDF inverse algorithm need further 
improvements in the following aspects. Further improvement 
should be considered without significantly increasing com- 
plexity in computation. First, the second cumulant solution is 
not accurate in the detailed shape of the distribution, especially, 
the front edge in the Gaussian distribution violates causality. 
An empirical distribution, which keeps the exact value of the 
first and second cumulants, while satisfies the causality, can be 
designed to replace the Gaussian distribution. 



198 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 2, MARCH/APRIL 2003 

Second, the boundary condition is approximate. When a 
more accurate distribution /(r, s, t) at early time is needed, 
the boundary condition for a semi-infinite geometry should be 

I{x, y,z = 0; e, 4>, t) = 0,        if cos 9 > Q.      (30) 

This type of the boundary condition was studied by Domke [24] 
for the steady state case. The solution is represented as a super- 
position of a solution describing a transport problem in an infi- 
nite medium, and a Fredholm integral term, which corrects this 
solution for the appropriate half-space boundary condition. This 
approach may be used for further development of the boundary 
problem. 

Third, to consider the nonlinear effects, /*°'s in (16) should 
be replaced by the Green's function in a real heterogeneous 
medium. Among the high-order perturbative corrections of 
the Green's function, the "self-energy" diagram, which counts 
photon round trips through a position up to infinite times, 
plays an important role. Gandjbakhche et al. [25] studied this 
effect using a random walk model. We find that a renormal- 
ization procedure for this nonlinear effect can be performed 
after image is obtained using a linear inversion process. This 
renormalization procedure can recover the optimal value of the 
optical parameters and can improve the resolution of image. 
The detailed results of the renormalization will be published 
elsewhere. 

The translation invariance is valid for the parallel geometry 
assuming that the (x, y) area is infinite. We suppose that this 
assumption of the infinite area is reasonable. How much error 
arises due to the finite area of a sample will be studied in details. 

Use of the simulated data mainly tests the validity of the 
inverse algorithm, does not test accuracy of the forward model. 
Experimental data from phantoms and in vivo measurements 
in human body will be performed for further testing of our 
approach. 
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Abstract 

The powerlaw patterns in Mie scattering (the normalized light intensity /(0)//(0) vs. the dimensionless qR where 
q - 47tA"' sin \ is the magnitude of the wave vector transfer at the scattering angle 0 for wavelength X, and R is the radius 
of the nonabsorbing sphere with a relative refractive index m>X) are analyzed using the geometrical optics approx- 
imation for particles of a large size parameter. The (gi?)"" powerlaw regime is shown to be present only in Mie scat- 
tering of soft particles. The {qR)'^ powerlaw regime occurs at the scattering angles of the ;? = 1 geometrical ray 
(refracted without internal reflections) from the portion of the incident beam with an incidence angle around 7t/4 upon 
the particle. The {qR)'^ powerlaw regimes from particles sharing one common relative refractive index but differing in 
size parameters are collinear. Simple analytical expressions are derived to describe these powerlaw regimes of Mie 
scattering. 
© 2003 Elsevier B.V. All rights reserved. 

PACS: 3.80.+r; 42.25.Fx; 78.35+c 

Keywords: Light scattering; Mie scattering 

The study of light scattering by small particles is 
important in noninvasive characterization of small 
particles and radiative transfer in turbid media 
including atmosphere, marine environment and 
tissues (see, for example, van de Hulst's classic 
work[l] and the recent review volume edited by 
Mishchenko,  Hovenier  and  Travis  [2]).   Light 

'Corresponding author. Tel.: +1-212-650-6865; fax: +1-212- 
650-5530. 

E-mail address: minxu@sci.ccny.cuny.edu (M. Xu). 

scattering from a sphere of arbitrary size and re- 
fractive index (Mie scattering), one of a few exactly 
solvable cases, was derived in 1908 [3]. This exact 
solution was given in the form of a slow con- 
verging partial-wave series involving complex 
functions. The physical meaning and interpreta- 
tion of the Mie scattering was itself of lasting in- 
terests [4-7]. 

Recently, work on powerlaw regimes in 
Mie scattering was obtained by Sorensen and 
Fischbach [8] when plotting the normalized light 
intensity   I{6)/I{0)    versus    the    dimensionless 

0030-4018/S - see front matter © 2003 Elsevier B.V. All rights reserved, 
doi: 10.1016/j.optcom.2003.08.019 
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parameter qR, where 9 = 47iA~'sin| is the mag- 
nitude of the wave vector transfer at the scatter- 
ing angle Q for wavelength X after ignoring the 
interference ripple structure. These patterns were 
attributed to the structure factor of the illumi- 
nated portion of the scattering object. The Fou- 
rier transform of the illuminated annular shell for 
a sphere of radius R was used to explain the 
emerging {qRf, (qR)'^ and (qR)''* powerlaw re- 
gimes. This approach ignores the extra phase shift 
incurred to the light when it passes through the 
particle. The implicit assumption made there [8] 
that the phase shift due to the nonunity refractive 
index of the particle is negligible is valid for 
scattering of X-rays [9], but it is inappropriate for 
optical light scattering from particles with a large 
phase shift. 

In this paper, we analyze patterns in Mie 
scattering using the geometrical optics approxi- 
mation (GOA) for particles of a large size pa- 
rameter and derive simple analytical expressions 
to describe these powerlaw regimes of Mie scat- 
tering. 

The increase of the phase shift accompanies 
with the increase of the size parameter. The GOA 
becomes a viable one when the size parameter 
X = kR'3> \ where k = 2n?.'^ is the wave number. 
The scattering amplitude of light is composed of 
a diffraction light component and reflected and 
refracted rays when the contribution from surface 
waves can be neglected [10,1]. The diffraction 
peak is highly concentrated around the exact 
forward direction within angle A0 ~ \/x. By ig- 
noring the interference ripple structure, the Mie 
scattering in near forward scattering directions 
and outside the diffraction peak for soft particles 
whose refractive index m is close to unity 
{\m - 1| < 1) and for dense particles {m ~ 1.5) in 
GOA is dominated by the p = \ geometrical ray 
(refracted without internal reflections) [10-12]. 
The {qR)'^ and (qR)'* powerlaw regimes can be 
recovered from the asymptotic behavior of the 
contribution from this p = I geometrical ray [see 
Fig. 1]. 

The magnitude of the scattering amplitude of 
perpendicular polarization with respect to the 
scattering plane which was examined in [8] (the 
parallel polarization case can be analyzed in a 

p=0 

incident ray 

p=2 

Fig. 1. Geometrical rays scattered by a sphere. 

similar fashion) is dominated by the contribution 
AK^ from the /? — 1 geometrical ray [10] 

_ 2mx{^m^ + {m^-\yf\./m^ + {m^-l)fi-\) 

{m^-lf{l+t^f\^m^ + {m^-l)t^ + fi) 

and the scattering angle 9 is expressed as 

1/2 

sm 
2~ ni{l+fl) 

(1) 

(2) 

in terms of the incidence angle T where t = tan t. 
For soft particles, Eqs. (1) and (2) can be ex- 

panded in powers of /i = w - 1 

1 

l+fl 
n'^ + i + oin) 

sin-= nt + C){ii^), 

yielding 

fi 

2 u2 + sin^ I     2 sir^ & H^ + sm  I sm 

(3) 

(4) 

(5) 

under the condition /i <S sin | -c ^/]i. The first 
approximate form in (5) appeared in the classic 
book of van de Hulst [1, p. 222]. 

When sin | ~ /«, the incidence angle T is around 
f = tanT=l, Eqs. (1) and (2) can also be ex- 
panded about this point t — 1 
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\ 3/2 

^'''     /n2 - 1 \ v'2m2 - 1 + 1 

1 + 
m^ + l 

\/2m2-l(\/2w2-l + l) 

1 
\/2m2 _ 1 

a-11 

sin- 
0     \/2m2 -1-1 

2m 

1 + 
1 

V2/«2 _ 1 (^ -4 

(6) 

(V) 

Since the refractive index m ~ 1, 

OT^ + l 

V2w2-l(V2m2-l + l] 
1 

for soft particles, and the two values inside the 
brackets of (6) and (7) are close even for dense 
particles, we find 

AR, 
V2y    (V2w^-1)'^' 

sinf (V2m2-1 + 1)^^'' 
(8) 

o 
to 

0 1 

/=tanT 

Fig. 2. The ratio (.4;,, sin|)/(/(„, sinf),,, versus I = tanr. The 
curves obtained for particles of different refractive indices in- 
tersect with the 90% line at / c^; 0.7 and ( ~ 1.6 where the value 
of the incidence angle is t = 0.2rt and T = 0.37t, respectively. 

The range of the incidence angle z over which the 
above expression (8) is valid can be examined by 
plotting {AR^ sin|)/(^«, sinf),^, versus / = tanr [see 
Fig. 2]. The range of the incidence angle is approx- 
imately 0.2n < T < 0.37t for soft and dense particles 
(1 <m < 2) when a 10% relative error is allowed. 
The corresponding scattering angle range is given by 

\/3OT2 - 1 
3m 

V2    . e 
— <sm-< 

VJSm^ 25 10 
7/M 

(9) 

Thus, we can write the normalized scattered Hght 
intensity as 

Mie ■—»- 

o 

0.01 

0.0001 

1e-06 

1e-08 

1e-10 

' 
Mie 

- 

"    '^1    UlJWLS;¥»t|Qj5SB ■ 

. 

ll   * 
^ 

"" 
" 1   . 

m=1.50x:=384 

10 

(b) 

100 1000 

Fig. 3. The powerlaw regimes of a sphere of refractive index: 
(a) m = 1.01; (b) m = 1.50. The size parameter is x = 384. 
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m 
7(0) 

\sm\ 

2kn<^q<^ Iky/Ji,     \n\ « 1 

(10) 
from Eqs. (5) and (8) in GOA where we have used 
the fact S\ (0) = x^/l and qR = 2x sin f. This shows 
that the (qR)'^ powerlaw regime exists in Mie 
scattering of both soft and dense particles while 
the {qRy* powerlaw regime only appears in soft 

particles. The {qRy^ powerlaw regimes are col- 
linear while the {qR)" powerlaw regime are not 
for particles sharing one common relative refrac- 
tive index but differing in size parameters. For 
example, the {qR)'^ powerlaw regime is found 
within 5 <qR < 12, followed by the (?/?)"'* pow- 
erlaw regime within 8 < g-T? < 80, for a soft 
sphere of a refractive index m= 1.01; only the 
{qRy^ powerlaw regime is observed within 
\65 < qR < 300 for the dense sphere of a refractive 
index m = 1.50 (see Fig. 3). The size parameter of 
the sphere in both cases is A: = 384. 

Fig. 4 demonstrated the powerlaw regimes for a 
nonabsorbing   sphere   with   refractive   indices 

100 

• 
Miex=6 
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x=9(, 

;c=384 
igR)'^ 

...^3... 
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Fig. 4. The normalized Mie scattering curves plotted versus qR for spheres of refractive index: (a) m= 1.01; (b) m = 1.05; (c) w = 1.5. 
The {qR}'^ and {qR)'" powerlaw regimes of Mie scattering given by Eq. (10) are also plotted. 
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/n = 1.01, m = 1.05 and m= 1.5, respectively. The 
[qRy^ powerlaw regime exists only in soft parti- 
cles and disappears in dense particles. Its trend 
agrees well with our simple expression (10) [see the 
long-dash, dash, dot and dash-dot lines for parti- 
cles of increasing size parameters in Fig. 4(a) and 
(b)]. This agreement is better for larger and softer 
particles. On the other hand, the (qR)''^ powerlaw 
regime exists in both soft and dense particles. This 
regime occurs at a larger value of qR for particles 
of a larger size parameter and is broader for denser 
particles. The {qRy''' powerlaw regimes of particles 
of a common refractive index but of different size 
parameters coincide on one straight line (the solid 
lines in Fig. 4(a)-(c)). 

In conclusion, we have analyzed the powerlaw 
patterns in Mie scattering using the geometrical 
optics approximation for particles of a large size 
parameter. The (9/?)"'' powerlaw regime is shown to 
be present only in soft particles. The {qR)~ pow- 
erlaw regime occurs at the scattering angles of the 
p — 1 geometrical ray (refracted without internal 
reflections) from the portion of the incident beam 
with an incidence angle around n/4 (from 0.2n to 
0.371 within a 10% relative error of the scattering 
amplitude) upon the particle. The {qR)~'^ powerlaw 
regimes from particles sharing one common relative 
refractive index but differing in size parameters are 
collinear. The {qR)'^ and {qRy* powerlaw regimes 
of Mie scattering are well captured by the simple 
analytical expressions given in Eq. (10). 
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absorption inhomogeneity in turbid media 
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ABSTRACT 

We report on the effect of the nonlineai multiple passage on optical imaging of an absorption inhomc^ 
geneity of finite size deep inside a turbid medium based on a cumulant solution to radiative transfer. 
An analytical expression for the nonlinear correction factor is derived. Comparison to Monte Carlo 
simulations reveals an excellent agreement. The implication on optical unaging is discussed. 

Keywords; nonlinear correction, multiple passage, radiative transfer, optical imaging 

1. INTRODUCTION 

The principle of optical imaging of turbid media (such as tissues) is to locate and reconstruct the optical 
properties (absorption and scattering coefficients) of embedded mhoraogeneities (such as tumor) in the 
hope of identification by inverting the difference in time-resolved or frequency-modulated photon trans- 
mittance due to the presence of the inhomogeneities through either iterative or noniterative methods. 
The key quantity involved is the weight function which quantifies the influence on the detected signal 
due to the change of the optical parameters of the medium. The diffusion approximation to radiative 
transfer provides an adequate model for the weight function (or Jacobian) for a small and weak ab- 
sorption inhomogeneity far away from both the source and the detector. However, the weight function 
predicted by the linear perturbation approaches is no longer valid when the absorption strength is not 
small. ^ This can be attributed to the multiple passage of a photon through one single abnormal site. 

The change of the light intensity A/ at the detector r^ due to the presence of an absorption site at 
r from a modulated point source at Vg is expressed as 

AI = -6iieyG{TdMr)G{t, uj\r,) (1) 

to the first order of Bom approximation where Sna is the excess absorption of the absorption site whose 
volume is V, oj is the modulation frequency of Ught, and G is the propagator of photon migration in 
the background medium. Here, the Green's function G(r2,a;|ri), in general, depends on the detail of 
light scattering inside the medium, and the incident and outgoing directions of light. 

When the absorption strength is not small [dfiaV it: 1), photon loss due to multiple passage of the 
absorption site is appreciable and can not be ignored. The expression for AI in Eq. (1) needs to be 
modified to include the contributions from multiple visits of the site by the photon. Fig. (1) illustrates 
the most important correction (a "self-energy" correction) which takes into account the repeated visits 
made by a photon to the site up to an infinite, times. 

Further author information: (Send correspondence to M. Xn) 
M. Xu: Email: irmnxu@sd.ccny.cuny.edu 

Photon Migration and Diffuse-Light Imaging, Oavtcl A. Boas, Editor, 
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source inhomogeneity detector 

Figure 1. Self-energy correction to the multiple passage effect on light absorption. 

Assuming that the center of the absorption site is located at r axid far away from both the source 
and the detector, the change of the detected light, A/, is now given by 

A/   =    -G{rd,uj\f)VSfi^if)'£[-N^iiit^',R)VSfi,{t)fG{f,ij\r,) (2) 

where 

iV„if(<^iiJ) = :^JJ G{r2,i^\Ti)dh2d^ri (3) 

is the self-propagator which describes the probability that a photon revisits the volume V of size R. 
Here G(Td, <*'|r) and G(f, a;|ra) are well modelled by the center-moved diffusion model as long as the 
separations Ir^ - f |, \TB - r) » Zt where k is the transport mean free path of light in the medium.^ 
However, the diffusion Green's function can not be used m Eq. (3) to evaluate N^^i{{uj;R) where ri is 
in the proximity of rj. By comparing Eq. (2) to Eq. (1), the nonlinear multiple passgage effect of an 
absorption site can be stimmariaied by the nonlinear correction factor [1 -|- iVaeif(w;R)V5fia{f)]~^. This 
factor serves as a universal measure of the nonlinear multiple passage effect as long as the absorption 
site is far away from both the source and the detector and its size is much smaller than its distance to 
both the source and the detector. 

In this article, we will derive an aaalytical expression for the self-propagator to understand the 
nonhnear multiple passage effect on light absorption using our cumulant solution to radiative transfer. 
The nonlineax correction factor [1 + Nse]i(u>\ R)VSn(,{f)]~^ of our result is shown to be in an excellent 
agreement with the Monte Carlo simulations for continuous wave light. 

2. THEORY 

To take into account the higher order contributions from the absorption inhomogeneity, the behavior 
of the photon migration in a short distance must be considered. Although the photon distribution is 
almost isotropic at an absorption site deep inside the medium, the diffusion approximation is still not 
appropriate here. The separation between the two pomts ri and ra within the volume in Eq. (3) is 
smaU. The photon propagator JV(r2,t(r,,s), which represents the probability that a photon propagates 
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from position n with propagation direction s to position rj in time t, when ra is in the proximity of 
Tj, is governed by the radiative transfer equation rather than the diffusion equation. 

Recently we have shown that the propagation of photon inside a turbid medium (the radiative 
transfer equation) can be solved analytically using a cuxnulajit expansion of the photon distribution 
function.^ The propagation of photon was found to transform from an initial ballistic motion at early 
time and then gradually to a center-adjusted diffusion at later time. The propagator of photon density 
(the Green's function) in an infinite uniform medium is given by** 

iV(r,t|ro,so) = ■exp 
(r - ro - soA(t))2 

4D(i)t "Mo< (4) [47rZ5(<)t]V2 

ignoring the small difference in the diffusion coefficient along different directions where the absorption 
coeflicient is /XQ, the time-dependent diffusion coefficient is 

Dit) = ||^ - [1 - expi-ct/h)] - i [1 - eM-ct/lt)?} 

and 
A{t) = lt[l - exp{-ct/lt)] 

(5) 

(6) 

is the average center of photons which moves with speed c initially and approaches the transport mean 
free path It in the long time limit. The Green's function for parallel geometries can be obtained by the 
method of image sources.^ 

2.1. Propagator of an isotropic point source 

Let's now consider the propagator iV(r, tjro.So) at the inhomogeneity site rp = 0 (the origin of space) 
deep inside the medium. The photon distribution at To is almost isotropic but is anisotropic scattering. 
The effective propagator can then be obtained by averaging (4) over the propagation direction So of 
hght over the 47r solid angle, and is given by [see Appendix A] 

^eff(r, ^)   =   -^J d^^^i'^y *|ro, so) = j^ 
exp(-^a*) 

iexp  - (r-A(f))^ 
W(t)t 

(47r)3/2(£)(t)i)l/27-A(i) 
(7) 

exp 
AD(t)t 

This reduces to 

N,g{r, t) = ^^L^Sir - ct),    for t -. 0+ 

and 

NMr,t) = 
expi-figt) 

Sexp  - exp {r + ltf 
ADr^t }■ for t» 1 

(47r)3/a(I>oct)V2rit 

in early and late time limits where Doa = /tc/3. 

The temporal Fourier transforms of the asymptotic equations (8) and (9) are given by 

(8) 

(9) 

^eff(r,a;)   =   ;^^^^exp [(ia;-iza)^ (10) 
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and 

^^^^^"^^ = 87vDrKl.t f^^(-«l'' - ^t!) - exp(-«(r + k))] (11) 

respectively, where K = \/3{fia - iuj)/ltc whose sign is chosen with a nonnegative real part. In the limit 
of small K < 1, Eq. (11) simplifies to 

lim NMT, U^) = I ^^   "" ^ !' (12) 

This is the case, for example, that a continuous wave propagates in a nonabsorbing medium.   The 
erroraous divergence at the zero separation in the diffuse Green's function 

G(r,a/)=    ,   -,   _ 
AirDr^T 

(13) 

is removed in our formulation of the propagation of an isotropic point source. 

The asymptotic equation (11) from the late time Umit provides a good approximation for Nes{T,uj) 
when r>lt [see Fig. (2)]. The contribution to N^f^ir^u) when r <lt is from either ballistic or diffusive 
photons, hence an improvement to Eq. (10) can be made 

(14) 

to include the contribution jfrom diffusive photons. The effective propagator in temporal Fourier space 
Nef{{r,u - 0) and its asymptotic behaviors (10), (11) and (14) axe shown in Fig. (2). The diffusion 
Green's function has a huge error for small r. 

2.2. Self propagator for a finite volume 

For an absorption site of a finite volume V deep inside the medium, say a sphere of radius R <s: L 
where L is the dimension of the medium, the self-propagator iVgeif (t; R) for this volume which denotes 
a photon revisits the site in time t is written as: 

=    y j^    NeB(T,t)fo{r)47rr^dr (15) 

where 

^,ir)   =   l-|l + ^(^y (16) 

is the characteristic function for a uniform sphere.^^   This characteristic function has a form of 

7o(7-) = 1 - {S/4V)T + ... (17) 

for an arbitrary particle where S is the surface area of the particle. This self propagator (15) for a finite 
volume is quite different from the self-propagator of a point, obtained by setting r = 0 in (4) or (7), 
I.e., 

\2 A(t)^ 
4D{t)t (t>0). (18) 
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Figure 2. The effective propagator in temporal Fourier space Ntsir^u = 0) for photon migration in a nonab- 
Eorbing medium. Its approximations by (14) when r < it and by Eq. (11) when r > it are aiao plotted. Thn 
diffusion Green's function has a huge error for small r. 

See Fig. (3), This difference comes from the fact that Eq. (15) includes the contribution from the 
baUistic motion of the photon when the photon flies across the site while Eq. (18) does not contain this 
effect. The former manifests itself in Fig. (3a) as the linear decay of Ng^git] R)V in the form of 7o(ci) 
near the origin. 

The self-propagator in temporal Fourier space is thus obtained by a temporal Fourier transform of 
(15): 

r-rtx>  _ 
Ns^(uj;R)   =    /       iVgeif (t; i?) exp(iwt)rft (19) 

1   f^^ n r+°^ 

V Jo Jo 
1   r"^^ 

=    —J     N^{r,u;)'yo(r)4irr'^dr. 

The lower limit of integration is O''', emphasizing that t = 0 should be excluded from integration. Note 
limt_io+ NeK(r,t) = 0 for our curaulant photon density function. This is not the case for the diffusion 
Green's function. A numerical quadrature is generally required to compute this self propagator (19). A 
crude estimation of Ns,^{u; R) can be obtained from the asymptotic behavior (11) and (14) of N^(r, u), 
i.e., 

iV, 
I    rmmi 

'sefr('^;-fl)    -    vj 

vJo 

inin(2fl,/t)      | 

+: 
i-nrr'^c 

1 

exp {ioj- fia)- 7o('r)47rr^d7- (20) 

0     StrDoorKlt 
[GXP(-K; \r - lt\) - exp(-K(r + !!«))] 70 (r)47rr''^(ir. 
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Figure 3. The self-propagators for a finite volume and a point: (a) Nscuit; R) and (b) N,.ff{0,t). 

This reduces to 

N^\{{u = 0;fl) = l| 
R < lt/2 

R > kll 
(21) 

for a continuous wave propagating inside a nonabsorbjng medium {w = //Q = « = 0). This estimation 
turns out to be amazingly good. Fig. (4) plots iVgajf (u; = 0; K) from numerical quadrature and the crude 
estimation (21). 

3. RESULTS AND DISCUSSION 

The multiple passage effect due to the absorption site can now be computed using the self-propagator 
Eq. (19) derived here. For large sites, the self-propagator N^\x{u} = 0; B) increases inverse proportionaJ 
to its size (TVgeif oc R'^) from Eq. (21); hence the nonlinear correction factor has a form of 

\^ N^AtW;R)V5^a{t) bltc '} (22) 

dependent on the area of the absorption site for large R. 

Monte Carlo methods have been extensively used in simulation of photon migration.^- ^^ We perform 
Monte Carlo simulations on a uniform nonabsorbing and isotropic scattering slab (the anisotropic factor 
of scattering g = 0). The units of length of time are chosen such that the mean scattering length 
Is - l/ns = 1 and the speed of light c = 1. The transport mean free path is hence It = I and the 
thickness of the slab is assumed L = SO^f. An absorption spherical site is located at the center of the 
slab (0> 0, LI2) with radius R whose absorption and scattering coefficients are ^a,2 = ^iJ-a = 0.01 and 
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Figure 4. The self propagator iVBeif(u; = 0; R) and its estimator. The diffusion self-propagator for continuous 
waves is also plotted. 

Ms,2 = ^s respectively. The photon is incident at the origin on the left boundary of the slab z = 0 in 
the normal direction of the surface. Each photon is traced until it escapes the slab through either the 
left or the right boundary. The correlated sampling is used in simulation to reduce variance. A single 
simulation is used to compute the emitted photon density /g for the uniform background (nonabsorption 
slab) and I for the slab with the absorption site present. 

The nonlinear correction factor [1 +NBe]f{ui]R)VS(j,a{f)]~^ in Eq. (22) can be extracted from the 
change of the detected light intensity due to the presence of the absorption site in Monte Carlo simula- 
tions according to Eq. (2). Fig. (5) plots the theoretical nonlinear correction factor and that from Monte 
Carlo simulations. "Back" and "Forward" denote the cases where light emits from the left (z=0) and 
the right {z = L) boundaries, respectively. The agreement between our theoretical result and Monte 
Carlo simulations is excellent except for extremely small sizes of inhomogeneities. 

Figs. (6) and (7) plot the nonlinear correction factor versus the variation of the modulation frequency 
of light for a fixed absorption strength and versus the size of the absorption site with a fixed modulation 
frequency of light respectively. With the increase of the modulation frequency of light, the nonlinear 
correction becomes less accentuated. The dependence on the size of the inhomogeneity is no longer 
monotonic for modulated light while the nonlinear correction factor decreases monotonically with the 
increase of the size for continuous wave light. The phase delay is in the order of a few degrees in the 
cases investigated. 

The typical value of the absorption coefficient of himian tissues is around O.OOlps-^ while the 
scattering coefficient is about Ips-^ Hence the absorption and scattering ratio is in the order of 0.001. 
This should be compared to our results listed here where the corresponding ratio is 0.01 and one order 
of magnitude stronger. The nonlinear correction factor for absorption inhomogeneities such as tumors 
in human tissues is not appreciable unless the size of the inhomogeneity is i? ~ 5/^ or larger. 
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Figure 5. The nonlinear correction factor from the theoretical self-propagator Eq. (19) and Monte Carlo simu- 
lations. "Back" and "Forward" denote light emitting from the left (z=0)and the right (z = L) boundaries. The 
excess absorption is <5/Za = 0.01. 
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Figure 7. The nonlinear correction feictor versus the variation of the size of the absorption site. The modulation 
frequency of light is w = 0.1. The excess absorption is Sfia = 0.01. 

In conclusion, we have derived an analytical expression for the nonlinear correction factor which 
agrees well with Monte Carlo simulations. The effect of the nonlinear multiple passage of an absorption 
site on optical imaging only becomes appreciable when the size of the inhomogeneity is Ut or larger for 
human tissues. 

APPENDIX A. DERIVATION OF NsFriR, T) 

The spatial Fourier transform of (4) is given by 

iV(k,t|ro,so) = I d^Texp{-ik ■ r)Nit,t\ro,So) = exp (-k^D{t)t - ^at ~ ik ■ soA{t)) .      (23) 

Hence, the effective propagator in spatial Fourier space at ro is expressed as 

sin(fcA(f,)) 
Ar^(k,«) = ip y'd2soAr(k,t|ro,so) - exp {■-k^D{t)t - fi^t) ^i^^ (24) 

by averaging (23) over the propagation direction SQ of light over the 4IT solid angle.   The effective 
propagator in real space j$ then obtained by an inverse spatial Fourier transform of (24): 

NMr,t)    =   f ^e^p{ik.r)exp{-k^D{t)t-,.j)'^^^ 

exp(-/Xat) 
(477)3/2 (£)(*)*) 1/27. A(t) 

2exp("//gt) 

(47r)3/2(D(t)i)V27.A(<) 

jexp  - (r - Ait))'' 

exp 

4Dit)t 

r^ + A{t)'^ 

W{t)t 

-exp 
{T + A{t)f 

W(t)t 

sinh 
rA{t) 
2D{t)i' 

(25) 
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Abstract: Independent component analysis of the scattered wave is proposed as the preproces- 
sor to characterization of absorptive inhomogeneities embedded in turbid media. Reconstruction 
results with simulated and experimental data will be presented for multiple embedded objects. 
© 2003 Optical Society of America 
OCIS codes: (170.3010) Image reconstruction techniques; (290.7050) Turbid media; (100.3190) Inverse problems 

Optical biomcdical imaging has attracted significant interests over the past decade because of its potential to 
noninvasively probe the interior of turbid media such as human breasts.[1, 2, 3] The foreign objects such as 
tumors inside the turbid medium distort the light flux surrounding the medium. The distortion of the light 
flux (the scattered wave) can be used to reconstruct the location and the optical properties of the foreign 
objects via modelling of the light propagation inside the medium.[4] In the linearized scheme of inversion, 
the perturbation on the light flux due to the inhomogeneity is determined by two Green's functions: the first 
one G(r, r^) of light propagation from the source at r^ to the site r of the inhomogeneity, and the second 
one G(rd, r) of light propagation from the site of inhomogeneity to the detector at Td- The inverse problem 
is highly ill-posed because of the smoothing nature of the involved Green's functions. The ill-posedness of 
the problem is accentuated due to the involvement of both G{r,rs) and G'(rd,r) in optical imaging. 

Recently, independent component analysis (ICA) has been shown to be an effective method to recover 
unobserved signals (sources) from several observed mixtures.[5, 6] In this report, we propose a novel approach 
for optical imaging. The distortion of the light exitance is interpreted as a mixture of virtual sources where 
the virtual source and the mixing matrix represent the Green's functions G{T,TS) and G(rrf,r) respectively. 
The mixing matrix and the virtual sources can be recovered by ICA and used to characterize the embedded 
inhomogeneities by fitting the individual Green's functions. 

Foreign absorptive objects located inside an otherwise uniform infinite slab can be probed using CW (or time- 
resolved or frequency modulated) scanning point sources. The foreign absorptive objects have an excessive 
absorption (5/iu(r). Denote the embedded absorption inhomogeneities as g^ = 5fj,a{^i)cVi where c is the speed 
of light in the medium and Vi is the volume of the ith absorption inhomogeneity, the scattered wave field 
can be written as: n 

-0sca(rd;rs) = 5])G(rd,rj)5^G(rj,rs) (1) 
j=i 

where G(r, r') is the Green's function of the uniform background. The dependence on w is not explicitly 
shown as one argument of the Green's function G for clarity. 

The scattered wave i^sca in (1) hence represents a mixture of n independent virtual sources sj^r^) = 
qjG{Tj,Ts) by the mixing matrix A whose dj entry is Oj(rd) = G{rd,rj), and reduced to the well-known 
instantaneous mixture model: n 

x(r3) = ^s(r,) = J2 aj«j(rs) (2) 

where 

x{rs)    =    (-?i'5ca(rdi;r3),...,-i;!!>sca(rd„;r<,))^ (3) 



Bj    =    (aj(rd,),..., aj(r<i,J) 

A    =    (ai,...,a„), 

and m > n is the number of sensors. Note the symmetry about the source and the sensors in Eq. (1). The 
role of sensors and sources can be interchanged freely (the reciprocal property of light propagation). By 
using the mutual independence among the virtual sources Sj, the virtual sources Sj can be separated up to 
permutation and scaling. The virtual sources can be extracted simultaneously for all (a parallel scheme) or 
one by one (a deflation scheme).[5, 7] 

After having extracted virtual sources Sj and their corresponding mixing vectors a^-, both the location and 
strength of the jth object can be computed by a simple fitting procedure. The virtual source Sj and the 
mixing vector a^ are the scaled version of the Green's functions G{rj,rs) and G{rd,Tj) for an absorptive 
object respectively, i.e., 

Sj    =    ajG{rj,rs) (4) 

aj    =    0jG{Td,rj). 

The location of the jth object TJ and the strength QJ of the jth object are then obtained by fitting using 
Eq. (4). The strength of absorption is given by (]j = aj(3j. 

Fig. (1) displays the separation and characterization of two simulated point absorbers, each of an absorption 
strength of unity, inside a slab of thickness 50mm. The transport mean free path is 1mm. The incident CW 
point source scans throughout a set of 21 x 21 grid points with a spacing of 4.5mm betwcn two consecutive 
grid points on one side of the slab. The light exitance on the other side of the slab is recorded by a CCD 
camera on twice denser grid points. We used 20% additive Gaussian noise in this simulation. By fitting to 
Eq. (4), the position of the point absorbers are found to be very close to the input values with an enor less 
than 2mm in all three directions. The strengths of the two unit absorbers are resolved to be 0.98 and 1.01 
with an error of less than 2%, respectively. 

Fig. (2) shows the result of unmixing of experimental data taken for two parallel absorptive rods immersed 
inside an Intralipid-10% liquid diluted to have a transport mean free path of 1mm. The thickness of the slab 
is 50mm and the scanning step is 5mm. The locations are found to be a: = -17.8mm and z = 26.4mm for 
the first rod, and x = 14.1mm and z = 22.7mm for the second rod, approximately agreeing with the input 
values. 

This proposed approach is able to locate and reconstruct the optical properties of point inhomogeneities, 
well suited for the cases of sparse inhomogeneities. In practice, the inhoraogeneity of a finite size can be 
approximated by a point one as long as its dimension is much smaller than the distance from the object to 
the surface where the light sources and detectors are placed. The same approach can be applied to mixed 
(absorptive and diffusing) inhomogeneities. The shape of the inhomogeneity may also be estimated by using 
a similar technique to back-propagation. 
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Multiple passages of light through an absorption inhomogeneity of finite size deep within a turbid medium 
are analyzed for optical imaging by use of the self-energy diagram. The nonlinear correction becomes more 
important for an inhomogeneity of a larger size and with greater contrast in absorption with respect to the host 
background. The nonlinear correction factor agrees well with that from Monte Carlo simulations for cw light. 
The correction is approximately 50%-75% in the near infrared for an absorption inhomogeneity with the 
typical optical properties found in tissues and five times the size of the transport mean free path. © 2004 
Optical Society of America 

OCIS codes:   290.4210, 290.7050, 170.3660. 

The main objective of optical imaging of turbid media 
is to locate and identify the embedded inhomogeneities 
by essentially inverting the difference in photon 
transmittance in the time or frequency domains due 
to the presence of these inhomogeneities.*"* The key 
quantity involved is the Jacobian, which quantifies 
the influence on the detected signal due to the change 
of the optical parameters of the medium. The linear 
perturbation approach is suitable for calculating the 
Jacobian for only a small and weak absorption in- 
homogeneity and is not valid when the absorption 
strength is large.^ This failure can be attributed to 
the multiple passages through the abnormal site by 
the photon. The most important correction is the 
self-energy correction,® which takes into account the 
repeated visits made by a photon through the site up 
to an infinite number of times. The presence of other 
inhomogeneity islands can be ignored because the 
photon propagator decreases rapidly with the distance 
between two separate sites. 

In this Letter the nonlinear correction for an absorp- 
tion inhomogeneity of a large strength due to repeated 
visits by the photon is modeled by a nonlinear correc- 
tion factor (NCF) to the linear perturbation approach. 
The NCF as a function of the size and the strength 
of the inhomogeneity is estimated by use of the self- 
energy diagram. The NCF is obtained from the cu- 
mulant approximation to the radiative transfer and 
verified by Monte Carlo simulations for cw light. The 
magnitude of the NCF is 0.5-1 for an absorptive in- 
homogeneity of up to 5Z( (Z( is the mean transport free 
path of light) and of the typical optical properties of 
human tissues (yxa'f/c ~ 0.01-0.05, where fia is the 
absorption coefficient and c is the speed of light in the 
medium). 

If we consider an absorption site centered at r and 
far away from both the source and the detector, the 
change in the detected light A/ at the detector r^ from 
a modulated point source at Vs including the multiple 
passages through the site is given by 

M = -G(rd,co\r)VSjia(r)J^[-N,,ui<o;RWSiJia{rif 
n=0 

xG(r,a)\rs) 

= -G(rrf, ft>|r)——-== 
VSf^a(f) 

l + Nse){{(o;R)VSfiM 

xG(r,a>|r,,), (1) 

where S/j.a is the excess absorption of the absorption 
site of size R and volume V, a) is the modulation fre- 
quency of light, G is the propagator of photon migra- 
tion in the background medium, and 

Ns^\({(o;R) 
V^ )v Jv 

G(r2,^|ri)d3r2d'Vi      (2) 

is the self-propagator that describes the probability 
that a photon revisits volume V. Here G{r2,io\ri) 
gives the probability density that a photon leaves the 
volume at ri and re-enters it at r2. The scattering 
property of the site is the same as that of the back- 
ground. In Eq. (1) G (rd, oj I r) and G (r, w | rj) are well 
modeled by the center-moved diffusion model as long 
as separations Ir^ — r| and |rs — r| are much greater 
than Z/.' However, the diffusion Green's function can- 
not be used in Eq. (2) to evaluate N^eiti'^lR) because 
the diffusion approximation breaks down when ri is in 
the proximity of r2. 

Comparing Eq. (1) with the standard linear pertur- 
bation approach, the nonlinear multiple passage effect 
of an absorption site is represented by a NCF: 

NCF = [1 + N^Mio^-RWSfiair)]- (3) 

This factor serves as a universal measure of the non- 
linear multiple-passage effect as long as the absorption 
site is far from both the source and the detector and its 
size is much smaller than its distance to both the source 
and the detector. This correction is more significant 
when the NCF is further away from unity. 
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Photon propagator iV(r2,i ki.s), the probabihty 
that a photon propagates from position ri with propa- 
gation direction s to position r2 in time t, for any sepa- 
ration between ri and ra, was recently derived'''* in a 
form of the cumulant approximation to the radiative 
transfer. 

In the case of interest in which the absorption site 
is deep inside the medium, the photon distribution 
is isotropic. The photon propagator is simplified 
to Ne[c{r,t) = iVeff(|r2 - ril.O, which is obtained by 
averaging N(r2,11 ri, s) over the propagation direction 
s of light over the in solid angle. In the frequency 
domain this effective propagator is approximately 
given by 

N^air, cj) = 

1 
47rr^ 

expi-— K^lirj 

+ £2a±2lMsinh(.r),    r<l,,    (4) 

exp(-Kr) 

AnDrKlt 
sinh(KZ() r^l, 

where D = Itc/^ and K = [3(Ma - iu))/ltcY''^, whose 
sign is chosen with a nonnegative real part. The two 
terms in N^K when r < U represent ballistic and dif- 
fusion contributions, respectively. The ballistic term 
does not depend on scattering because the photon dis- 
tribution involved is already isotropic. Only diffusion 
contributes to iS^eff when r > h- The self-propagator 
for an absorption sphere deep inside the medium is 
given by 

iVseif(w;/?) V2 Jv Jv 

If 
V Jo 

Neff(|r2-ri|,ft;)d^r2d^ri 

A^efr('-,w)ro(r)47rr2dr, (5) 

where ro(r) = 1 - (3r/4i?) + (1/16) (r/7?)^ is the 
characteristic function for a uniform sphere.* An ab- 
sorption site of an arbitrary shape can be treated the 
same way. The exact self-propagator must be com- 
puted by a_numerical quadrature. A good approxi- 
mation of Nscif(w;i?) is 

Ar6eif(w;i?) = A. 
Vc 

X ■ 

( 

3^ 
4 

5 ^        2 

1/2 

16 

-fV/( + 0(/c2), 

^ 320 ^    / 
(6) 

f>l/2 

by use of relation (4), where f = R/lt when \K\R <SC 1. 
The exact and approximate versions of dimensionless 
self-propagator 'N^^ifVlj'^c when K = 0 are plotted as 
solid and dashed curves, respectively, in Fig. 1(a). Di- 
mensionless self-propagator ATseifVZj-^c depends solely 
on two dimensionless quantities KU of the background 
and R/lt of the absorbing sphere. 

It is worthwhile to point out that self-propagator 
in time Nse\f{t;R), the inverse Fourier transform of 

Eq. (5), includes the contribution from the ballistic mo- 
tion of the photon when the photon passes through the 
site. This ballistic contribution manifests itself as the 
linear decay of Nse\{{t;R)'V in the form of yo{ct) near 
the origin of the time, followed by a transition to dif- 
fusion [Fig. Kb)]. 

The NCF is obtained by plugging Eq. (5) or (6) into 
Eq. (3).   In particular, we have 

NCF 

1 + 

1 + 

9 

1677 

9 
IOTT 

'(^-4) 
g r^ + — 3 

32 128 

12^ 

^<l/2 

f >l/2 

(7) 

where q = VSfiaO^)/lfc is the dimensionless strength 
of the absorber when \K\R « 1. For an absorber of 
fixed q > 0, the effectiveness of absorbing light is di- 
minished (the NCF decreases) when its size is reduced. 
This can be understood from the fact that the photon 
spends less time per volume inside the absorber of a 
smaller dimension because of the ballistic motion of the 
photon after each scattering event. The photon leaves 
a small site {R < It) in an almost straight line. The 
diffusion behavior for an individual photon is observed 
only after a large number of scattering and on a scale 
larger than /(. 

Figure 2 shows plots of the NCF versus absorber 
size for typical absorbers of excess absorption S/jLak/c 
equal to 0.01 and 0.05. The nonlinear correction fac- 
tor generally decreases with the size of the absorber 
whose excess absorption is fixed. With the increase 
of the background absorption and the modulation fre- 
quency, the nonlinear correction becomes less accentu- 
ated. The phase delay is larger for higher modulation 
frequencies and less background absorption. 

Monte Carlo simulations■"' are performed for cw light 
propagating in a uniform nonabsorbing and isotropic 
scattering slab. The thickness of the slab is L = 80Z(. 
A spherical absorber of radius R is located at the center 
(0,0, L/2) of the slab. The excess absorption of the ab- 
sorber is SfiJt/c = 0.01. The absorber has the same 
scattering property as the background. The details of 
the Monte Carlo computation were provided in a pre- 
vious publication."   The correlated sampling method 

2   Z.S 3   3.5   4   4.6 s 
ftn. 

(b) 

7'c and its ap Fig. 1.   (a) Self-propagator Nse\{{o;R)Vli 
proximation form  when  K — 0.   (b) Self-propagator for 
spheres of various radii in the time domain inside a 
nonabsorbing medium. 

(ms itI8662a/irm) 



August 1, 2004 / Vol. 29, No. 15 / OPTICS LETTERS 

  
*-v^-.^         

-2 "^v"^'^ 

•4 r ^^                 N 

■a -6 s                 '^•^ 
5;jy/r=0.01                           \ 

£-10 >c*^=0.O0                      \ 
0.01                         N 

-12 ai                   \    . 
-iO.Ol                             \ 

,   0.01-tO.Ol                               \ , 
0.1-/0.01                             \   

2    3    4    5 

fJI, 

7     8     9    10 

1 

0.9 

0.8 

0.7 

gO.6 

5 0.5 

0.4 

0.3 

0.2 

0.1 

. .    .    . 
j(i^=0OO   \ 0.01     , 

\s at  " l^X -JOOl , 

Vt ^v O.Ol-iOOl  

^% 
^-----_^ 

*.'/'■ =0.05 ^^~~~ 

-5 

Cio 

|.15 

£.20 

■25 

5     6    7     8     9    10 
-30 

W/"l)OS 

i<=S=O00   
001  
01  

-ffl.Ol  
OOl-fO.Ol  
Ol-iO-OI   

1 7     8    9    10 

Fig. 2. NCF (magnitude and phase angle) versus the size 
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ground medium. 
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Fig. 3. (a) Theoretical nonlinear correction factors from 
numerical quadrature (Exact), the approximate form of 
relation (7) (Approx), and Monte Carlo simulations (MC). 
Results from four independent Monte Carlo simulations 
are shown for each radius. The standard linear perturba- 
tion approach corresponds to horizontal line NCF = 1 (not 
shown in the figure), (b) Percentage change of the cw 
transmittance from the experimental data given in Fig. 9 
of Ref 5 compared with the theoretical predictions made 
by the standard linear perturbation approach (StdPert) 
and those including NCF (Exact and Approx). 

is used in each simulation to reduce variance.'^ A 
single simulation is used to compute the change in light 
transmittance due to the presence of the absorption 
site and the corresponding NCF. Figure 3(a) shows 
the NCFs obtained from numerical quadrature, the ap- 
proximate form of relation (7), and Monte Carlo simu- 
lations. The agreement between our theoretical NCF 
and that from Monte Carlo simulations is excellent. 
The slight difference between them at large radii is 
accounted for by the fact that the sphere can no longer 
be regarded as small compared with the dimensions 
of the slab. The probability of a photon revisiting a 
large sphere is overestimated by Eq. (5) for the sphere 
located at the center of the slab." 

Figure 3(b) shows the percentage change of the cw 
transmittance estimated from the experimental data 
given in Fig. 9 of Ref. 5. The relevant parameters 
of the experiment are summarized in the inset. The 
theoretical predictions from the linear perturbation ap- 
proach with and without the nonlinear correction are 
also shown in Fig. 3(b), assuming a coUimated point 
source and a point detector in a confocal setup. Our 
theoretical prediction with nonlinear correction pro- 
vides a significant improvement over linear pertur- 
bation and agrees much better with the experimental 
result. 

The typical value of the absorption coefficient of 
human tissues in the near infrared indicates that 
Halt/c ~ 0.01-0.05."'= This fact should put our 
results on NCFs in this range (Figs. 2 and 3) into 
perspective. The nonlinear correction becomes more 
important for an inhomogeneity of a larger size and 
with greater contrast in absorption with respect to 
the background. The value of the NCF decreases 
from ~0.75 to —0.5 for an absorption site of radius 5lt 
with excess absorption S/j.alt/c increasing from 0.01 to 
0.05. The standard linear perturbation approach in 
optical imaging should be augmented to include this 
nonlinear correction. 
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